27 julio 2010

Synthetic Division

The polynomial remainder theorem follows from the definition of polynomial long division; denoting the divisor, quotient and remainder by, respectively, g(x)\,, q(x)\,, and r(x)\,, polynomial long division gives a solution of the equation

f(x)=q(x)g(x) + r(x)\,,
where the degree of r(x)\, is less than that of g(x)\,.
If we take g(x) = x-a\, as the divisor, giving the degree of r(x)\,as 0, i.e. r(x) = r\,:

f(x)=q(x)(x-a) + r\,.
Setting x=a \!\, we obtain:

f(a)=r\,.

No hay comentarios:

Publicar un comentario