27 julio 2010

JACOBI'S METHOD

This method had been consigned to history until the advent of parallel computing, but has now acquired a new lease of life. It uses a sequence of similarity transformations with plane rotation matrices, each one of which makes a larger than average off-diagonal element (and its transpose) zero. This unfortunately destroys previous zeros, but nevertheless reduces the sum of the off-diagonal elements, so that convergence to a diagonal matrix occurs.
The orthogonal matrix
\begin{displaymath}P=\left[ \begin{array}{ccccccccccc}
1 & \cdots & \cdot & \cd...
...t]\begin{array}{c} \\ \\ s \\ \\ \\ \\ t \\ \\ \\ \end{array}, 
\end{displaymath}

where the non-standard elements are in rows and columns 
s and t, and real $\phi $ is chosen so that bst=0, with [bij]=B=PTAP. The elements of AP are given for $k=1,2,\ldots ,n$ by 

\begin{eqnarray*}[AP]_{ks} & = & a_{ks}\cos \phi 
-a_{kt}\sin \phi \\ [0pt]
[AP]_...
...{kt}\cos \phi \\ [0pt]
[AP]_{kj} & = & a_{kj}, \quad j\not= s,t.
\end{eqnarray*}

Premultiplying by 
PT we find in particular that 

\begin{displaymath}b_{st}=\frac{1}{2}(a_{ss}-a_{tt})\sin 2\phi 
+a_{st}\cos 2\phi , \end{displaymath}

and this is zero if 

\begin{displaymath}\tan 2\phi =\frac{2a_{st}}{a_{tt}-a_{ss}}. 
\end{displaymath}

We could simply compute the sum of the squares of the off-diagonal elements, but we prefer a more roundabout approach.

Lemma 10.5.3   If B=PTAP, where P is orthogonal, then trace  B= trace  A and trace  BTB= trace  ATA.
Proof.  The trace of a matrix is the sum of its eigenvalues, and A and B have the same eigenvalues, which proves the first part. 
Also BTB=(PTAP)TPTAP=PTATPPTAP=PT(ATA)P, and the first result now gives the second.
Now
 \begin{displaymath}\sum _{i=1}^n\sum _{k=1}^n 
a_{ki}^2=\mbox{trace}~
A^TA=\mbox{trace}~ B^TB=\sum _{i=1}^n\sum _{k=1}^n b_{ki}^2.
\end{displaymath}

In the case where $A=\left[ \begin{array}{ll}a_{ss} & a_{st}\\ a_{st} &
a_{tt}\end{array} \right]$
PTAP=B gives 

  
ass2+2ast2+att2=bss2+btt2.

But each of these elements is just the same as in the $n\times n$ case, so  is true in this case also. Since 
aii=bii for all values of i except sand t, we have 

\begin{displaymath}\sum _{i=1}^na_{ii}^2+2a_{st}^2=\sum 
_{i=1}^nb_{ii}^2, \end{displaymath}

so the sum of the squares of the diagonal elements is increased by the transformation by an amount 2
ast2. we now see that 

\begin{displaymath}\sum _{i\not= j}b_{ij}^2=\sum _{i\not= 
j}a_{ij}^2-2a_{st}^2, \end{displaymath}

where the sums are over all values of 
i,j which are not equal, that is over all off-diagonal elements. 

If we choose ast so that $a_{st}^2\geq \frac{\sum _{i\not=
j}a_{ij}^2}{n^2-n}$, that is, so that it is greater than average, we have
\begin{displaymath}\sum _{i\not= j}b_{ij}^2\leq \left( 
1-\frac{2}{n^2-n}\right) \sum
_{i\not= j}a_{ij}^2, \end{displaymath}

and the sum of the off-diagonal elements converges to zero with convergence factor $1-\frac{2}{n^2-n}$. This is unfortunately close to 1 for large matrices. 

Suppose the sequence of transformations is given by
\begin{displaymath}B_{m+1}=P_m^TB_mP_m,\quad m=0,1,\ldots , 
\end{displaymath}

with 
B0=A, and Pm chosen as above. Then Bm converges to a diagonal matrix whose elements are the eigenvalue sof A. When we have reached a sufficient degree of convergence, say for m=M, we have 

\begin{displaymath}B_M=P_M^TP_{M-1}^T\ldots P_0^TAP_0P_1\ldots 
P_M=Q_M^TAQ_M, \end{displaymath}

say, and the eigenvectors of 
A are approximated by the columns of QM

No hay comentarios:

Publicar un comentario